Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1373367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633244

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Coelhos , Staphylococcus aureus , Países em Desenvolvimento , Antibacterianos , Vacinas Bacterianas , Toxoides
2.
Proc Natl Acad Sci U S A ; 121(6): e2309243121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289950

RESUMO

Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.


Assuntos
Dermatite Atópica , Eosinofilia , Infecções Estafilocócicas , Animais , Camundongos , Eosinófilos/metabolismo , Staphylococcus aureus/metabolismo , Peptídeo Hidrolases/metabolismo , Pele/metabolismo , Dermatite Atópica/metabolismo , Infecções Estafilocócicas/metabolismo , Celulite (Flegmão)/metabolismo , Celulite (Flegmão)/patologia , Inflamação/metabolismo
3.
Biochem Pharmacol ; 220: 115978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081369

RESUMO

Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFß activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.


Assuntos
Lesão Pulmonar Aguda , Receptor Tipo 2 de Angiotensina , Camundongos , Animais , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/agonistas , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Receptor Tipo 1 de Angiotensina/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle
4.
Drug Dev Res ; 84(8): 1567-1571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37540034

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections. With the emergence of antibiotic-resistant bacteria, there is an unmet clinical need to develop immune-based therapies to treat skin infections. Previously, we have shown pan-caspase inhibition as a potential host-directed immunotherapy against community-acquired methicillin-resistant S aureus (CA-MRSA) and other bacterial skin infections. Here, we evaluated the role of irreversible pan-caspase inhibitor emricasan as a monotherapy and an adjunctive with a standard-of-care antibiotic, doxycycline, as potential host-directed immunotherapies against S. aureus skin infections in vivo. We used the established CA-MRSA strain USA300 on the dorsum of WT C57BL/6J mice and monitored lesion size and bacterial burden noninvasively, and longitudinally over 14 days with in vivo bioluminescence imaging (BLI). Mice in four groups placebo (0.5% carboxymethyl cellulose [CMC] solution), placebo plus doxycycline (100 mg/kg), emricasan (40 mg/kg) plus doxycycline, and emricasan only were treated orally twice daily by oral gavage for 7 days, starting at 4 h after injection of S aureus. When compared with placebo, all three groups, placebo plus doxycycline, emricasan plus doxycycline, and emricasan treated group, exhibited biological effect, with reduction of both the lesion size (*p = .0277, ****p < .0001, ****p < .0001, respectively) and bacterial burden (***p = .003, ****p < .0001, ****p < .0001, respectively). Importantly, the efficacy of emricasan against S. aureus was not due to direct antibacterial activity. Collectively, pan-caspase inhibitor emricasan and emricasan plus doxycycline reduced both the lesion size and bacterial burden in vivo, and emricasan is a potential host-directed immunotherapy against MRSA skin infections in a preclinical mouse model.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Cutâneas Estafilocócicas , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Staphylococcus aureus , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 14: 1171934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483624

RESUMO

Staphylococcus aureus is a leading cause of bacteremia, further complicated by the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). A better understanding of host defense mechanisms is needed for the development of host-directed therapies as an alternative approach to antibiotics. The levels of IL-1, IL-17, and TNF-α cytokines in circulation have been associated with predictive outcomes in patients with S. aureus bacteremia. However, their causative role in survival and the cell types involved in these responses during bacteremia is not entirely clear. Using a mouse model of S. aureus bacteremia, we demonstrated that IL-17A/F and TNF-α had no significant impact on survival, whereas IL-1R signaling was critical for survival during S. aureus bacteremia. Furthermore, we identified that T cells, but not neutrophils, monocytes/macrophages, or endothelial cells were the crucial cell type for IL-1R-mediated survival against S. aureus bacteremia. Finally, we determined that the expression of IL-1R on γδ T cell, but not CD4+ or CD8+ T cells was responsible for survival against the S. aureus bacteremia. Taken together, we uncovered a role for IL-1R, but not IL-17A/F and TNF-α in protection against S. aureus bacteremia. Importantly, γδ T cell-intrinsic expression of IL-1R was crucial for survival, but not on other immune cells or endothelial cells. These findings reveal potential cellular and immunological targets for host-directed therapies for improved outcomes against S. aureus bacteremia.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/fisiologia , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Células Endoteliais , Bacteriemia/prevenção & controle
6.
Sci Adv ; 9(24): eadf8748, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327341

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections and is a major health burden due to the emergence of antibiotic-resistant strains. To address the unmet need of alternative treatments to antibiotics, a better understanding of the protective immune mechanisms against S. aureus skin infection is warranted. Here, we report that tumor necrosis factor (TNF) promoted protection against S. aureus in the skin, which was mediated by bone marrow-derived immune cells. Furthermore, neutrophil-intrinsic TNF receptor (TNFR) signaling directed immunity against S. aureus skin infections. Mechanistically, TNFR1 promoted neutrophil recruitment to the skin, whereas TNFR2 prevented systemic bacterial dissemination and directed neutrophil antimicrobial functions. Treatment with a TNFR2 agonist showed therapeutic efficacy against S. aureus and Pseudomonas aeruginosa skin infections, which involved increased neutrophil extracellular trap formation. Our findings revealed nonredundant roles for TNFR1 and TNFR2 in neutrophils for immunity against S. aureus and can be therapeutically targeted for protection against bacterial skin infections.


Assuntos
Neutrófilos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Infecções Estafilocócicas/tratamento farmacológico
7.
Spine J ; 23(9): 1389-1399, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247639

RESUMO

BACKGROUND CONTEXT: Bacterial infection of spinal instrumentation is a significant challenge in spinal fusion surgery. Although the intraoperative local application of powdered vancomycin is common practice for mitigating infection, the antimicrobial effects of this route of administration are short-lived. Therefore, novel antibiotic-loaded bone grafts as well as a reliable animal model to permit the testing of such therapies are needed to improve the efficacy of infection reduction practices in spinal fusion surgery. PURPOSE: This study aims to establish a clinically relevant rat model of spinal implant-associated infection to permit the evaluation of antimicrobial bone graft materials used in spinal fusion. STUDY DESIGN: Rodent study of chronic spinal implant-associated infection. METHODS: Instrumentation anchored in and spanning the vertebral bodies of L4 and L5 was inoculated with bioluminescent methicillin-resistant Staphylococcus aureus bacteria (MRSA). Infection was monitored using an in vivo imaging system (IVIS) for 8 weeks. Spines were harvested and evaluated histologically, and colony-forming units (CFUs) were quantified in harvested implants and spinal tissue. RESULTS: Postsurgical analysis of bacterial infection in vivo demonstrated stratification between MRSA and phosphate-buffered saline (PBS) control groups during the first 4 weeks of the 8-week infection period, indicating the successful establishment of acute infection. Over the 8-week chronic infection period, groups inoculated with 1 × 105 MRSA CFU and 1 × 106 MRSA CFU demonstrated significantly higher bioluminescence than groups inoculated with PBS control (p = 0.009 and p = 0.041 respectively). Histological examination at 8 weeks postimplantation revealed the presence of abscesses localized to implant placement in all MRSA inoculation groups, with the most pervasive abscess formation in samples inoculated with 1 × 105 MRSA CFU and 1 × 106 MRSA CFU. Quantification of CFU plated from harvested spinal tissue at 8 weeks post-implantation revealed the 1 × 105 MRSA CFU inoculation group as the only group with a significantly greater average CFU count compared to PBS control (p = 0.017). Further, CFU quantification from harvested spinal tissue was greater than CFU quantification from harvested implants across all inoculation groups. CONCLUSION: Our model demonstrated that the inoculation dosage of 1 × 105 MRSA CFU exhibited the most robust chronic infection within instrumented vertebral bodies. This dosage had the greatest difference in bioluminescence signal from control (p < 0.01), the lowest mortality (0% compared to 50% for samples inoculated with 1 × 106 MRSA CFU), and a significantly higher amount of CFUs from harvested spine samples than CFUs from control harvested spine samples. Further, histological analysis confirmed the reliability of this novel rodent model of implanted-associated infection to establish infection and biofilm formation of MRSA for all inoculation groups. CLINICAL SIGNIFICANCE: This model is intended to simulate the infection of instrumentation used in spinal fusion surgeries concerning implant locality and material. This model may evaluate potential antimicrobial and osteogenic biomaterials and investigate the relationship between implant-associated infection and failed fusion.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Ratos , Animais , Infecções Estafilocócicas/tratamento farmacológico , Infecção Persistente , Roedores , Reprodutibilidade dos Testes , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças
8.
Exp Dermatol ; 32(4): 425-435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36461082

RESUMO

Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro-inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host-directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild-to-moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis-like dermatitis, AD-like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis-like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD-like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis-like dermatitis and decreased S. aureus skin colonization upon AD-like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.


Assuntos
Dermatite Atópica , Inibidores da Fosfodiesterase 4 , Psoríase , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Proteínas Filagrinas , Modelos Animais de Doenças , Dermatite Atópica/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Prurido/tratamento farmacológico , Psoríase/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Inflamação/tratamento farmacológico
9.
Microbiol Spectr ; 10(5): e0245121, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36106881

RESUMO

Staphylococcus aureus is an important cause of various infections in humans, including bacteremia, skin and soft tissue infections, and infections associated with implanted medical devices. The emergence of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) underscores the urgent and unmet need to develop novel, safe, and effective antibiotics against these multidrug-resistant clinical isolates. Oxazolidinone antibiotics such as linezolid have excellent oral bioavailability and provide coverage against MRSA infections. However, their widespread and long-term use is often limited by adverse effects, especially myelosuppression. TBI-223 is a novel oxazolidinone with potentially reduced myelosuppression, compared to linezolid, but its efficacy against MRSA infections is unknown. Therefore, the preclinical efficacy of TBI-223 (80 and 160 mg/kg twice daily) was compared with that of linezolid (40 and 80 mg/kg twice daily) and sham treatment in mouse models of MRSA bacteremia, skin wound infection, and orthopedic-implant-associated infection. The dosage was selected based on mouse pharmacokinetic analysis of both linezolid and TBI-223, as well as measurement of the MICs. In all three models, TBI-223 and linezolid had comparable dose-dependent efficacies in reducing bacterial burden and disease severity, compared with sham-treated control mice. Taken together, these findings indicate that TBI-223 represents a novel oxazolidinone antibiotic that may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans. IMPORTANCE Staphylococcus aureus is the predominant cause of bloodstream, skin, and bone infections in humans. Resistance to commonly used antibiotics is a growing concern, making it more difficult to treat staphylococcal infections. Use of the oxazolidinone antibiotic linezolid against resistant strains is hindered by high rates of adverse reactions during prolonged therapy. Here, a new oxazolidinone named TBI-223 was tested against S. aureus in three mouse models of infection, i.e., bloodstream infection, skin infection, and bone infection. We found that TBI-223 was as effective as linezolid in these three models. Previous data suggest that TBI-223 has a better safety profile than linezolid. Taken together, these findings indicate that this new agent may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Infecções Estafilocócicas , Animais , Camundongos , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antibacterianos/efeitos adversos , Bacteriemia/tratamento farmacológico , Linezolida/efeitos adversos , Testes de Sensibilidade Microbiana , Oxazolidinonas/efeitos adversos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
10.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35882236

RESUMO

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Assuntos
Infecções Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Antibacterianos , Proteínas de Transporte , Defensinas/genética , Disbiose , Queratinócitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
11.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35014627

RESUMO

Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models. 11C-PABA PET imaging selectively detected infections in muscle, intervertebral discs, and methicillin-resistant Staphylococcus aureus-infected orthopedic implants. In what we believe to be first-in-human studies in healthy participants, 11C-PABA was safe, well-tolerated, and had a favorable biodistribution, with low background activity in the lungs, muscles, and brain. 11C-PABA has the potential for clinical translation to detect and localize a broad range of bacteria.


Assuntos
Ácido 4-Aminobenzoico/análise , Radioisótopos de Carbono/análise , Staphylococcus aureus Resistente à Meticilina , Tomografia por Emissão de Pósitrons/métodos , Infecções Estafilocócicas , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/farmacocinética , Adulto , Animais , Radioisótopos de Carbono/química , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Meios de Contraste/análise , Meios de Contraste/química , Meios de Contraste/metabolismo , Meios de Contraste/farmacocinética , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Coelhos , Ratos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/microbiologia , Distribuição Tecidual , Adulto Jovem
12.
J Invest Dermatol ; 142(4): 1126-1135.e4, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626614

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is important for psoriasis pathogenesis because STAT3 signaling downstream of IL-6, IL-21, IL-22, and IL-23 contributes to T helper type 17 cell development and because transgenic mice with keratinocyte (KC) STAT3 expression (K14-Stat3C mice) develop psoriasis-like dermatitis. In this study, the relative contribution of STAT3 signaling in KCs versus in T cells was evaluated in the imiquimod model of psoriasis-like dermatitis. Mice with STAT3-inducible deletion in KCs (K5-Stat3-/- mice) had decreased psoriasis-like dermatitis and epidermal STAT3 phosphorylation compared with wild-type mice, whereas mice with constitutive deletion of STAT3 in all T cells were similar to wild-type mice. Interestingly, mice with KC-inducible deletion of IL-6Rα had similar findings to those of K5-Stat3-/- mice, identifying IL-6/IL-6R as a predominant upstream signal for KC STAT3-induced psoriasis-like dermatitis. Moreover, psoriasis-like dermatitis inversely associated with type 1 immune gene products, especially CXCL10, whereas CXCL10 limited psoriasis-like dermatitis, suggesting that KC STAT3 signaling promoted psoriasis-like dermatitis by restricting downstream CXCL10 expression. Finally, treatment of mice with the pan-Jak inhibitor, tofacitinib, reduced psoriasis-like dermatitis and epidermal STAT3 phosphorylation. Taken together, STAT3 signaling in KCs rather than in T cells was a more important determinant for psoriasis-like dermatitis in a mechanism that involved upstream KC IL-6R signaling and downstream inhibition of type 1 immunity‒associated CXCL10 responses.


Assuntos
Dermatite , Psoríase , Animais , Quimiocina CXCL10 , Dermatite/patologia , Modelos Animais de Doenças , Interleucina-6/metabolismo , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Interleucina-6 , Fator de Transcrição STAT3/metabolismo , Linfócitos T/metabolismo
13.
J Orthop Res ; 40(2): 409-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33713394

RESUMO

C-C motif chemokine receptor 2 (CCR2) is an important mediator of myeloid cell chemotaxis during inflammation and infection. Myeloid cells such as monocytes, macrophages, and neutrophils contribute to host defense during orthopedic implant-associated infections (OIAI), but whether CCR2-mediated chemotaxis is involved remains unclear. Therefore, a Staphylococcus aureus OIAI model was performed by surgically placing an orthopedic-grade titanium implant and inoculating a bioluminescent S. aureus strain in knee joints of wildtype (wt) and CCR2-deficient mice. In vivo bioluminescent signals significantly increased in CCR2-deficient mice compared with wt mice at later time points (Days 14-28), which was confirmed with ex vivo colony-forming unit enumeration. S. aureus γ-hemolysin utilizes CCR2 to induce host cell lysis. However, there were no differences in bacterial burden when the OIAI model was performed with a parental versus a mutant γ-hemolysin-deficient S. aureus strain, indicating that the protection was mediated by the host cell function of CCR2 rather than γ-hemolysin virulence. Although CCR2-deficient and wt mice had similar cellular infiltrates in the infected joint tissue, CCR2-deficient mice had reduced myeloid cells and γδ T cells in the draining lymph nodes. Taken together, CCR2 contributed to host defense at later time points during an OIAI by increasing immune cell infiltrates in the draining lymph nodes, which likely contained the infection and prevented invasive spread.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas Hemolisinas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2 , Receptores de Quimiocinas
14.
Sci Transl Med ; 13(622): eabl6851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851697

RESUMO

Staphylococcus aureus is a major human pathogen causing serious implant­associated infections. Combination treatment with rifampin (10 to 15 mg/kg per day), which has dose-dependent activity, is recommended to treat S. aureus orthopedic implant­associated infections. Rifampin, however, has limited bone penetration. Here, dynamic 11C-rifampin positron emission tomography (PET) performed in prospectively enrolled patients with confirmed S. aureus bone infection (n = 3) or without orthopedic infection (n = 12) demonstrated bone/plasma area under the concentration-time curve ratio of 0.14 (interquartile range, 0.09 to 0.19), exposures lower than previously thought. PET-based pharmacokinetic modeling predicted rifampin concentration-time profiles in bone and facilitated studies in a mouse model of S. aureus orthopedic implant infection. Administration of high-dose rifampin (human equipotent to 35 mg/kg per day) substantially increased bone concentrations (2 mg/liter versus <0.2 mg/liter with standard dosing) in mice and achieved higher bacterial killing and biofilm disruption. Treatment for 4 weeks with high-dose rifampin and vancomycin was noninferior to the recommended 6-week treatment of standard-dose rifampin with vancomycin in mice (risk difference, −6.7% favoring high-dose rifampin regimen). High-dose rifampin treatment ameliorated antimicrobial resistance (0% versus 38%; P = 0.04) and mitigated adverse bone remodeling (P < 0.01). Last, whole-genome sequencing demonstrated that administration of high-dose rifampin in mice reduced selection of bacterial mutations conferring rifampin resistance (rpoB) and mutations in genes potentially linked to persistence. These data suggest that administration of high-dose rifampin is necessary to achieve optimal bone concentrations, which could shorten and improve treatments for S. aureus orthopedic implant infections.


Assuntos
Rifampina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Tomografia por Emissão de Pósitrons , Rifampina/farmacocinética , Rifampina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
15.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233954

RESUMO

Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1ß (IL-1ß) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1ß, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.


Assuntos
Caspases , Staphylococcus aureus Resistente à Meticilina , Animais , Caspase 1 , Inibidores de Caspase/farmacologia , Imunoterapia , Inflamassomos , Interleucina-1beta , Camundongos , Inibidores do Fator de Necrose Tumoral
16.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645549

RESUMO

IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL­36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL­36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL­36 cytokines in human atopic dermatitis skin and in IL­36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL­36 responses represent a key mechanism and potential therapeutic target against allergic diseases.


Assuntos
Dermatite Atópica/imunologia , Imunoglobulina E/imunologia , Interleucina-1/imunologia , Queratinócitos/imunologia , Plasmócitos/imunologia , Staphylococcus aureus/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Humanos , Switching de Imunoglobulina , Imunoglobulina E/genética , Interleucina-1/genética , Interleucina-4/genética , Interleucina-4/imunologia , Queratinócitos/microbiologia , Camundongos , Camundongos Knockout , Plasmócitos/patologia
17.
Dis Model Mech ; 13(7)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32586832

RESUMO

Post-surgical implant-associated spinal infection is a devastating complication commonly caused by Staphylococcus aureus Biofilm formation is thought to reduce penetration of antibiotics and immune cells, contributing to chronic and difficult-to-treat infections. A rabbit model of a posterior-approach spinal surgery was created, in which bilateral titanium pedicle screws were interconnected by a plate at the level of lumbar vertebra L6 and inoculated with a methicillin-resistant S.aureus (MRSA) bioluminescent strain. In vivo whole-animal bioluminescence imaging (BLI) and ex vivo bacterial cultures demonstrated a peak in bacterial burden by day 14, when wound dehiscence occurred. Structures suggestive of biofilm, visualized by scanning electron microscopy, were evident up to 56 days following infection. Infection-induced inflammation and bone remodeling were also monitored using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT). PET imaging signals were noted in the soft tissue and bone surrounding the implanted materials. CT imaging demonstrated marked bone remodeling and a decrease in dense bone at the infection sites. This rabbit model of implant-associated spinal infection provides a valuable preclinical in vivo approach to investigate the pathogenesis of implant-associated spinal infections and to evaluate novel therapeutics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Placas Ósseas/efeitos adversos , Parafusos Ósseos/efeitos adversos , Vértebras Lombares/cirurgia , Procedimentos Ortopédicos/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Carga Bacteriana , Remodelação Óssea , Modelos Animais de Doenças , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/microbiologia , Vértebras Lombares/fisiopatologia , Masculino , Microscopia Eletroquímica de Varredura , Procedimentos Ortopédicos/instrumentação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudo de Prova de Conceito , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Relacionadas à Prótese/fisiopatologia , Coelhos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/ultraestrutura , Fatores de Tempo
18.
Aging Cell ; 19(4): e13130, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32170906

RESUMO

The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.


Assuntos
Senescência Celular , Células Epiteliais/metabolismo , Interleucina-10/metabolismo , Pulmão/metabolismo , Linfócitos/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Interleucina-10/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Orthop Res ; 38(8): 1800-1809, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31975434

RESUMO

Orthopedic implant-associated infection (OIAI) is a major complication that leads to implant failure. In preclinical models of Staphylococcus aureus OIAI, osteomyelitis and septic arthritis, interleukin-1α (IL-1α), IL-1ß, and tumor necrosis factor (TNF) are induced, but whether they have interactive or distinctive roles in host defense are unclear. Herein, a S. aureus OIAI model was performed in mice deficient in IL-1α, IL-1ß, or TNF. Mice deficient in IL-1ß or TNF (to a lesser extent) but not IL-1α had increased bacterial burden at the site of the OIAI throughout the 28-day experiment. IL-1ß and TNF had a combined and critical role in host defense as mice deficient in both IL-1R and TNF (IL-1R/TNF-deficient mice) had a 40% mortality rate, which was associated with markedly increased bacterial burden at the site of the OIAI infection. Finally, IL-1α- and IL-1ß-deficient mice had impaired neutrophil recruitment whereas IL-1ß-, TNF-, and IL-1R/TNF-deficient mice all had impaired recruitment of both neutrophils and monocytes. Therefore, IL-1ß and TNF contributed to host defense against S. aureus OIAI and neutrophil recruitment was primarily mediated by IL-1ß and monocyte recruitment was mediated by both IL-1ß and TNF.


Assuntos
Interleucina-1beta/metabolismo , Infiltração de Neutrófilos , Infecções Relacionadas à Prótese/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Interleucina-1alfa/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infecções Relacionadas à Prótese/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo
20.
Methods Mol Biol ; 2069: 197-228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31523776

RESUMO

In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.


Assuntos
Staphylococcus aureus Resistente à Meticilina/metabolismo , Imagem Óptica , Infecções Cutâneas Estafilocócicas , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Infecções Cutâneas Estafilocócicas/diagnóstico , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...